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Abstract In the original traveling salesman problem, the traveling salesman has the task to
find the shortest closed tour through a proposed set of nodes, touching each node exactly
once and returning to the initial node at the end. For the sake of the tour length to be mini-
mized, nodes close to each other might not be visited one after the other but separated in the
tour. However, for some practical applications, it is useful to group nodes to clusters, such
that all nodes of a cluster are visited contiguously. Here we present an approach which leads
to an automatic clustering with a clustering parameter governing the sizes of the clusters.

Keywords Traveling salesman problem · TSP · Clustering · Simulated annealing

1 Introduction

The traveling salesman problem (TSP) [1–4], which was originally defined in 1832 [5],
is one of the most thoroughly investigated optimization problems. Scientists from applied
mathematics, computer science, statistical physics, computational biology, and operations
research applied their various exact algorithms and heuristic methods to this NP-complete
problem. There is no exact algorithm solving this problem in polynomial time, but so far, in-
stances up to 33,810 nodes have already been solved to optimality [6]. In order to better com-
pare the qualities of various heuristics applied to the TSP, libraries of benchmark instances
have been developed, e.g., the TSPLIB95, which is maintained by Reinelt’s group [7] and
from which two instances are shown in Fig. 1.

The traveling salesman problem is defined as follows: given N nodes with distances
D(i, j) between each pair (i, j) of nodes, the traveling salesman has the task to find the
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Fig. 1 Optimum solutions of two instances of the traveling salesman problem: optimum round trips through
127 beer gardens in Augsburg (BEER127, left) and through 442 drilling holes on a computer circuit (PCB442,
right)

shortest closed tour, touching each node exactly once and returning to the initial node at the
end. If denoting a feasible configuration as a permutation σ of the numbers 1,2, . . . ,N , the
Hamiltonian of this problem can be written as

HTSP(σ ) =
N∑

i=1

D(σ(i), σ (i + 1)) (1)

with σ(N + 1) ≡ σ(1). Although this problem seems to be academic at first sight (Hardly
anybody will ever perform a round trip through the 127 beer gardens of Augsburg, whose
locations are shown in the left graphic of Fig. 1), it has various practical applications, like the
problem of minimizing the length of the way a drilling head has to go for drilling 442 holes
in a computer circuit, as exemplarily shown in the right graphic of Fig. 1. For the case that a
real traveling salesman or saleslady has to find the shortest closed tour, the original problem
definition has to be extended: often enough, one is not interested in the round trip which has
the shortest length but that round trip for which the smallest amount of time is needed. Then
the distances are not measured in units of length, but of time. Additionally, often one has to
consider the case that these distances depend on the time of day and perhaps also on the day
of the week [8, 9]. Furthermore, the customers might have specific time windows in which
goods can be delivered to them or fetched from them [10, 11]. This more realistic scenario
can be easily extended to a vehicle routing problem, in which several traveling salesmen
drive trucks with finite capacities [12], often also having to consider the time windows of
their customers and depots [13]. Also other extensions of the traveling salesman problem
exist, e.g., for solving sequencing problems in production processes of car producers [14].

Besides these extensions of the TSP with temporal or capacity constraints, there are also
variants of the original TSP considering a related problem only on the basis of the underlying
graph. There is e.g. the Chinese postman problem, in which both a set of nodes and a set
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of edges connecting these nodes is given. The Chinese postman has to find the shortest
closed round trip, in which each of the given edges is traversed at least once [15]. For the
bottleneck TSP, that closed round trip has to be found for which the longest edge has the
shortest length [16]. In the traveling salesman problem with a center, the traveling salesman
has to find a short round trip with the constraint to stay close to a center point if possible [17].
In the generalized TSP, clusters of nodes are given. The traveling salesman has to find the
shortest closed round trip, containing one node of each cluster. In the clustered TSP (CTSP),
again clusters of nodes are given. The traveling salesman has to find the shortest closed round
trip through all nodes, visiting all nodes of each cluster contiguously [18, 19]. Hereby the
order in which the nodes of a cluster have to be visited is not specified. Thus, one has to
simultaneously find the optimum order within each cluster and the optimum order among
the clusters, which are not independent problems.

2 Traveling Salesman Problem with Clustering

In practical applications, sometimes these cluster definitions as in the CTSP are a priori pro-
vided, such that nodes within each proposed cluster have to be visited contiguously within
the tour. More often, however, one faces the problem, that no such clusters are a priori given,
only the nodes to be visited and the distances between them are known. When having a look
at the optimum round trip of a TSP instance, however, one often sees that nodes close to
each other are sometimes not visited one after the other, but separated in the tour, for the
sake of an overall minimum tour length. Therefore, sometimes one feels the urge to find a
slightly worse tour in which nodes close to each other are visited contiguously. On the other
hand, the deterioration of the tour length should remain small. Thus, the clustering of the
nodes should be performed simultaneously to the minimization of the overall tour length.
For this problem, we want to coin the term Traveling Salesman Problem with Clustering
(TSPC), for which we introduce a Hamiltonian to be minimized as

H(σ ) =
∑

i<j

D(σ(i), σ (j))c(i, j) (2)

with clustering factors

c(i, j) =
{

α|j−i|−1 if |j − i| ≤ N/2,

αN−|j−i|−1 otherwise
(3)

depending on a clustering constant 0 < α < 1. Please note that the calculation of the energy
of a configuration requires a computing time of order O(N2), whereas it is of linear order
for the original TSP. Furthermore note that the addends of the Hamiltonian of the original
TSP in (1) are also addends of the Hamiltonian in (2), such that we can write

H = HTSP + HC. (4)

In the first addend, we consider the overall tour length, i.e., the distances to the preceding
and succeeding nodes in the tour with a weight of 1. In the second addend HC, we consider
the distances to the second predecessor and successor with a weight of α, to the third prede-
cessor and successor with a weight of α2, and so on. We can split HC in a sum of addends
by defining a TSP related Hamiltonian as

Hτ (σ ) =
N∑

i=1

D(σ(i), σ (i + τ)), (5)
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in which the distances to the τ -th neighbors are summed up. For τ = 1, we have H1 = HTSP.
We can write

HC = αH2 + α2 H3 + · · · =
[N/2]∑

τ=2

ατ−1 Hτ . (6)

Depending on the size of the clustering constant α, more or less emphasis is put on a clus-
tering of nodes, which are located close to each other, in the tour.

Of course, we could also have chosen any other formula with which we introduce weight
values decreasing in an other way with an increasing distance of two node positions in the
tour. One might think e.g. of a linear decrease

c(i, j) =
{

(N − |j − i| + 1)/N if |j − i| ≤ N/2,

(|j − i| + 1)/N otherwise,
(7)

but according to our opinion, this linear formula puts too much weight on nodes farther away
from each other in the tour. On the other hand, an exponential decrease of the form

c(i, j) =
{

exp(−α(|j − i| − 1)) if |j − i| ≤ N/2,

exp(−α(N − |j − i| − 1)) otherwise
(8)

leads to a too strong decrease of the weight values. Thus, throughout this paper, we stay with
the power law decrease as defined in (3).

Please note that the traveling salesman problem with clustering, as defined above, is
quite different from the clustered traveling salesman problem, which was already defined
35 years ago in [18]. There, the various clusters are proposed a priori. Furthermore, visiting
all nodes of a cluster in a contiguous way is a hard constraint in the CTSP. In our problem
definition, clusters of nodes should arise naturally during the optimization process. Visiting
all nodes of a cluster contiguously is only a weak constraint and may be violated for the sake
of improving the overall tour length. Thus, there is no mapping transferring one problem
directly to the other.

3 Optimization of the Traveling Salesman Problem with Clustering with Simulated
Annealing

As there is no exact algorithm solving this problem, we apply the heuristic method simu-
lated annealing [20], with which we have already found excellent solutions for the standard
TSP [21–23] and with which we have recently been able to find densest packings of multi-
disperse systems of hard disks [24, 25].

Simulated annealing interprets the problem to be optimized as physical system, whose
energy is gradually reduced in a cooling process, finally ending up in the ground state of
the system with minimum energy or at least in a local minimum of the energy landscape
with a comparatively small energy. Thus, the cost function of the optimization problem is
interpreted as the Hamiltonian of the physical system, a feasible solution of the optimization
problem as configuration of the physical system. The application of simulated annealing
is rather straightforward: starting at a randomly generated initial configuration σ0 at high
temperatures, the system is subjected to a cooling schedule, until it freezes at very small
temperatures in a hopefully very good solution. We use an exponential cooling schedule
of the form Tnew = f Told with a cooling factor f slightly smaller than 1, e.g. f = 0.95. In
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Fig. 2 Three local search moves for the TSP: Exchange (top left), Node Insertion Move (top right), and
Lin-2-Opt (bottom)

each temperature step, a series of moves σi → σi+1 is performed. Each move is accepted
according to the Metropolis acceptance probability [26]

p(σi → σi+1) =
{

1 if �H ≤ 0,

exp(−�H/T ) otherwise
(9)

with T being the temperature and �H = H(σi+1) − H(σi) being the energy difference be-
tween the current configuration σi and the tentative new configuration σi+1. Thus, a move is
always accepted if it leads to an improvement. If a move leads to a deterioration, it is only
accepted with some probability, which is the smaller, the larger the deterioration and the
smaller the temperature is. In case of rejection, one sets σi+1 := σi .

There are various ways of how to change the current configuration of a TSP in a new
one. The simplest moves, which are shown in Fig. 2, are the Exchange, which exchanges
two randomly selected nodes in the tour, the Node Insertion Move, which shifts a randomly
selected node to a randomly chosen new position, and the Lin-2-Opt, which removes two
randomly chosen edges from the tour, thus creating two partial sequences, turns the direction
of one of these two partial sequences around, and reconnects the two partial sequences to
a new feasible configuration, with two new edges. Thus. the Lin-2-Opt always removes or
introduces a crossing in the tour. For these moves, the neighborhood size, i.e., the number of
configurations which can be created from the current configuration, is of order O(N2) [27].
The move leading to the best results is the Lin-2-Opt [21, 27].

However, it is useful also to include moves of the next higher order. There are four vari-
ants of the Lin-3-Opt [28], which remove three randomly selected edges from the tour and
reconnect the three thus created partial sequences to a new feasible tour with three new
edges, as shown in Fig. 3. The inclusion of even higher moves, such as the Lin-4-Opt, for
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Fig. 3 The four variants of the Lin-3-Opt

which 25 variants exist, does not lead to any further improvements in the quality of the re-
sults for the TSP [28]. Thus, we also use for our traveling salesman problem with clustering
only the seven above mentioned moves (Exchange, Node Insertion Move, Lin-2-Opt, and
the four variants of the Lin-3-Opt) and call them with equal probability.

Please note that the calculation of the energy difference between the current and the
tentative new configuration takes much more computing time in the case of the TSPC than
in the case of the original TSP. While for the original TSP, only the lengths of the new edges
have to be added and the lengths of the removed edges subtracted, the Hamiltonian for the
traveling salesman problem with clustering contains many more addends, which have to be
considered. In the case of the Exchange, a computing time of order O(N) has to be spent for
the calculation of the energy difference. But specifically for the four variants of the Lin-3-
Opt, it is necessary to calculate the overall energy of the tentative new configuration, which
takes a computing time of order O(N2). Also the calculation time in number of tried moves
has to be increased at least linearly with the system size, such that our overall computing
time scales at least with O(N3). Thus, in our investigations, we are restricted to system
sizes with only a few hundreds of nodes in order to perform thorough investigations of these
instances.

4 Computational Results for Optimum and Quasi Optimum Solutions

In order to demonstrate both the potential and the limitations of our definition of a traveling
salesman problem with clustering, we do not use TSP instances, in which the nodes can
trivially be grouped to clusters, separated from each other, but use TSP instances, for which
such a clustering is nontrivial. For this purpose, we choose the two instances shown in Fig. 1:
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Fig. 4 Optimum solutions for the TSPC instance based on the BEER127 TSP instance using various clus-
tering values α = 0.4,0.6,0.8, and 0.9

the BEER127 instance contains a large cluster of nodes in the city center of Augsburg and
some smaller clusters and isolated nodes in the villages around Augsburg. The wish to drive
contiguously through all nodes in the city center of Augsburg strongly contradicts the wish
to get an overall short tour length. The cluster in the city center has to be broken up in order
to best insert the beer gardens in the suburbs of Augsburg and thus to decrease the tour
length. An other example, in which the additional frustration by the clustering constraint
will have different interesting effects, is the PCB442 instance. Although many nodes of this
instance are placed on a regular grid, the PCB442 instance exhibits properties also known
from random instances [27]. Furthermore, it has a highly degenerate ground state [12].

As shown for these two instances in Figs. 4 and 5, the optimum solutions of the TSPC
instances change with changing clustering factor α. For small values of α, the TSP part
dominates, i.e., the minimization of the overall tour length is most strongly emphasized.
Increasing α to values larger than 0.5, the distances to the next nearest neighbors and the
second next nearest neighbors in the tour are added with a considerable weight, thus putting
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Fig. 5 Exemplary solutions for the TSPC instance based on the PCB442 TSP instance using various cluster-
ing values α = 0.4,0.6,0.8, and 0.9

more emphasis on the clustering aspect. The larger α, the more the clustering part dominates,
as can be seen in Fig. 5.

In order to thoroughly investigate the transition from a TSP-like system to a clustered sys-
tem, we performed 100 optimization runs each for values of α from α = 0.01 to α = 0.99 in
steps of 0.01 and for α = 0.995,0.999,0.9995,0.9999,0.99995, and 0.99999 for the TSPC
instance based on the BEER127 TSP instance. In each optimization run, we decreased the
temperature T from 105 to 10−5 by a factor of 0.95. In each temperature step, we performed
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Fig. 6 Results for various values of α for the TSPC instance based on the BEER127 TSP instance: top left:
increase of the ground state energy with increasing α, bottom left: ground state energy redrawn vs. 1 − α on
a logarithmic scale with the fit function 1.2 × 105(1 − α)−1.5, top right: development of the length of the
ground state, bottom right: deviation of the length of the ground state from the ground state length of the
corresponding TSP instance

104 move trials. For each value of α, we got the best result found several times, such that we
are quite sure that this best result is also the optimum result of the TSPC instance.

The left graphics in Fig. 6 show these best results for the TSPC instance based on the
BEER127 TSP instance. We find that the overall ground state energy increases strongly
with an increasing value of α. Close to α = 0, the ground state energy increases like

Hmin ∼ 1

(1 − α)1.5
. (10)

This power law increase holds roughly until α = 0.9. For values between α = 0.9 and α =
1.0, a transition occurs: in the limit α → 1, the ground state energy converges towards a
constant value ≈ 3.96 × 107. Please note that for the limiting case α = 1, all edges of the
round trip of the traveling salesman problem are considered with equal weight, the cluster
is thus extended uniformly over the whole system. This problem with a Hamiltonian

H(σ ) =
∑

i<j

D(σ(i), σ (j)) (11)

was already studied for the determination of the most important industrial sectors by Fred
Ramsey and his coworkers. In their problem, the entry D(i, j) in the matrix D denotes the
sum of the values industrial sector i buys from industrial sector j [29, 30]. This problem
exhibits the property that there is no optimization potential at all in the case of a symmetric
matrix with D(i, j) = D(j, i) for all pairs (i, j). Therefore, all solutions have the same
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energy value in the case α = 1. This does of course not mean that the configurations have
an equal TSP length. As one gets all configurations with equal probability, the mean value
of the lengths of the configurations is

〈HTSP〉 = ND̄ (12)

with the mean distance

D̄ = 1

N(N − 1)

N∑

i,j=1

D(i, j). (13)

For the BEER127 instance, we have D̄ = 4952.476 . . . and thus an average of 628964.46 . . . .
Analogously, we get D̄ = 1747.997 . . . and an average of 772614.92 . . . for the PCB442
instance.

The top right graphic in Fig. 6 displays the corresponding lengths of the ground state
configurations for the various values of α. We find that the lengths mostly increase monoto-
nously with an increasing value of α. In order to better visualize this increase, we addition-
ally plot the deviation of the ground state lengths of these TSPC instances from the ground
state length of the corresponding TSP instance,

δTSP,min = HTSP,min(α) − HTSP,min(α = 0)

HTSP,min(α = 0)
. (14)

Looking at the bottom right graphic in Fig. 6, we find that the ground state length stays
constant for some α intervals: for 0 ≤ α ≤ 0.05, the ground state of the original TSP in-
stance remains optimal. For 0.06 ≤ α ≤ 0.12, a configuration with the slightly larger length
118325.39 . . . is optimal. Further intervals are listed in Table 1. Mostly, we get shorter inter-
vals for larger values of α.

Interestingly, we also find an interval with a constant ground state in the range 0.999 ≤
α ≤ 0.99999, exhibiting a length of 246671.17 . . . . This length is of course much smaller
than the average length 628964.46 . . . for α = 1, but its corresponding configuration is also
one of the degenerate ground states for α = 1. It is the ground state with minimum length.

In order to measure the clustering effect, we have a look at the values of the Hamiltonians
Hτ as defined in (5) for the ground states, whose lengths are given in Table 1. There the
values for τ = 2 and τ = 3 are listed. Up to α = 0.53, we get monotonically decreasing
values for both H2 and H3, displaying that more emphasis is put on the distances to the next
nearest neighbors and third nearest neighbors. For large values of α, no further monotonic
decrease can be expected, as the clusters become larger and more emphasis is also put on
distances between nodes not so close to each other in the round trip.

5 Results for the Cooling Process

Secondly, we have a look at the dynamics of the cooling process in the application of sim-
ulated annealing to our traveling salesman problem with clustering. For this purpose, we
performed long-running optimization runs for various values of α for the TSPC instances
based on the BEER127 TSP instance and on the PCB442 TSP instance. We decreased the
temperature from an initial value of T = 105 to a final value of T = 10−5 exponentially by
a cooling factor of 0.95. In each temperature step, 104 measurements were taken. Between
two measurements each, 10 sweeps were performed. Due to the computing time for a single
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Table 1 Intervals of α-values with constant length of the ground state configuration of the TSPC instance
based on the BEER127 instance

HTSP,min H2 H3 interval

118293.52 . . . 190172.36 . . . 245680.49 . . . 0.00 ≤ α ≤ 0.05

118325.39 . . . 189600.62 . . . 244520.84 . . . 0.06 ≤ α ≤ 0.12

118513.97 . . . 188377.49 . . . 242552.95 . . . 0.14 ≤ α ≤ 0.16

118568.74 . . . 188068.05 . . . 242366.24 . . . 0.17 ≤ α ≤ 0.27

118628.78 . . . 187848.93 . . . 242340.36 . . . 0.28 ≤ α ≤ 0.31

118981.00 . . . 187452.97 . . . 241593.14 . . . 0.32 ≤ α ≤ 0.38

120980.31 . . . 186001.88 . . . 236560.87 . . . 0.39 ≤ α ≤ 0.46

122086.16 . . . 184992.98 . . . 235488.24 . . . 0.48 ≤ α ≤ 0.53

122311.91 . . . 184776.92 . . . 235528.79 . . . 0.54 ≤ α ≤ 0.57

122543.14 . . . 184637.54 . . . 235447.42 . . . 0.58 ≤ α ≤ 0.60

122915.38 . . . 184004.30 . . . 235519.40 . . . 0.62 ≤ α ≤ 0.63

124482.30 . . . 182489.70 . . . 233363.73 . . . 0.64 ≤ α ≤ 0.67

124714.30 . . . 182301.55 . . . 233157.65 . . . 0.68 ≤ α ≤ 0.70

126226.78 . . . 181172.84 . . . 232683.79 . . . 0.71 ≤ α ≤ 0.72

134345.44 . . . 193210.75 . . . 239488.86 . . . 0.78 ≤ α ≤ 0.79

138969.71 . . . 188956.09 . . . 242937.73 . . . 0.81 ≤ α ≤ 0.84

246671.17 . . . 265843.09 . . . 312001.05 . . . 0.999 ≤ α ≤ 0.99999

move scaling with the order O(N2), we were unable to perform even more measurements,
such that there are still some larger fluctuations in the curves, especially for the specific heat.

First, we consider the decrease of the mean energy 〈H〉 with decreasing temperature.
At very high temperatures, the system accepts almost every deterioration and is therefore
in a quasi random walk mode. Therefore, each distance value can occur at each position
with equal probability. In the random walk regime, the expectation value of Hamiltonian (2)
reduces to

〈H〉 = D̄γ (15)

with the mean distance D̄ as defined in (13) specific for each TSP instance and the clustering
parameter

γ =
∑

i<j

c(i, j) (16)

with the clustering factors c(i, j) as defined in (3), thus depending only on the clustering
parameter α and the number N of nodes. For small values of α, the clustering parameter γ

can be approximated by

γ ≈ N

1 − α
. (17)

This approximation holds up to α ≈ 0.9. In the limit α → 1, γ approaches the limiting value

lim
α→1

γ = N(N − 1)/2. (18)
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Fig. 7 Decrease of the
normalized mean energy with
decreasing temperature for
various values of the clustering
parameter α and for the two
TSPC instances based on the
BEER127 (top) and on the
PCB442 (bottom) TSP instance

Figure 7 shows the decrease of the mean energy with decreasing temperature for various
values of the clustering parameter α and for the TSPC instances based on the BEER127 TSP
instance and on the PCB442 TSP instance. We normalized the mean energy by the factor γ .
For infinitely high temperatures, the normalized mean value is equal to the mean distance D̄.
The mean energy decreases sigmoidally, until it freezes at small temperatures. The larger α,
the higher is the transition temperature and the smaller is the difference between the resulting
normalized mean value at small temperatures and D̄. As already mentioned above, for α = 1,
there would be no optimization potential at all, 〈H〉 would be constant D̄N(N − 1)/2.

In order to have a better look at the transition between the unordered high-energy regime
at high temperatures and the ordered low-energy regime at small temperatures, we have a
look at the specific heat

C = d〈H〉
dT

, (19)

which is given in thermal equilibrium as

C = Var(H)

T 2
. (20)

Looking at Fig. 8, we can clearly distinguish two different scenarios for the specific heat:
for small and medium-sized values of α, the specific heat looks similar to the specific heat
of the corresponding TSP instance [21], which is rather symmetric around its peak when
plotted vs. the logarithm of the temperature. The location of the peak, which denotes the
freezing temperature of the system, is shifted towards higher temperatures for increasing
values of α. For small values of α, the freezing temperature Tf scales with (1 − α)−1.5±0.2.
For the values of α we considered, we find the maximum freezing temperature for α = 0.95
in the case of the TSPC instance based on the BEER127 TSP instance and for α = 0.99 in the
case of the TSPC instance based on the PCB442 TSP instance. For α-values approaching 1,
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Fig. 8 Development of the specific heat for various values of α and for the TSPC instances based on the
BEER127 TSP instance (left) and on the PCB442 TSP instance (right): we can clearly distinguish two sce-
narios for small and medium-sized values of α (top) and values close to the limit α → 1 (bottom)

Tf decreases again. In this regime, the specific heat is strongly asymmetric: while cooling
the system, it rises sharply to its maximum and then decreases slowly over several orders of
magnitude of the temperature.

As the minimization of the overall tour length is still part of the traveling salesman prob-
lem with clustering, we have also a look at the decrease of the mean length 〈HTSP〉 with
decreasing temperature. Figure 9 shows a sigmoidal decrease for various values of α. The
curves decrease from a value of 〈HTSP〉 = ND̄, which is the average value of the tour lengths
occurring in the random walk. The resulting values, at which the various optimization runs
freeze at small temperatures, are mostly the larger, the larger α, a result, which we already
found in the last section. The decrease of 〈HTSP〉 is the steeper, the larger the value of α. For
small and medium-sized values of α, the critical temperature Tc , at which the system orders
itself according to the length constraint, increases with increasing α.

For this addend to the Hamiltonian, we can define a susceptibility. We introduce this
susceptibility via an analogy to the Hamiltonian of the Ising system: there the Hamiltonian
is given as

H = −
∑

〈i,j 〉
JijSiSj − H

N∑

i=1

Si = H0 − HNM (21)

with N Ising spins Si = ±1, the interactions Jij between neighboring spins, the external
magnetic field H , and the magnetization M . The susceptibility is defined as

χ = ∂〈M〉
∂H

. (22)
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Fig. 9 Decrease of the mean
length with decreasing
temperature for various values of
the clustering parameter α and
for the two TSPC instances based
on the BEER127 (top) and on the
PCB442 (bottom) TSP instance

Analogously, we define for our Hamiltonian H = λHTSP + Hc with λ = 1 the susceptibility

χ = ∂〈HTSP〉
∂λ

, (23)

which can be rewritten to

χ = Var(HTSP)

T
(24)

in thermal equilibrium.
Figure 10 shows that there are also two α-regimes for the susceptibility: for small and

medium-sized values of α, the peak of the susceptibility and thus the critical temperature
Tc is shifted towards higher temperatures. The displacement scales with (1 − α)−1±0.1. The
height of the peak is the smaller, the larger the value of α. Increasing α, a second peak of
the susceptibility at smaller temperatures emerges, which becomes larger than the right peak
for α approaching the limiting value 1. The smaller the deviation of α from 1, the larger the
height of this second peak and the smaller the corresponding critical temperature. For the
TSPC instance based on the BEER127 TSP instance, we can even see a third peak, which
we cannot distinguish for the TSPC instance based on the PCB442 TSP instance.

6 Summary and Outlook

As a variation of the original traveling salesman problem, in which a traveling salesman has
the task to find the overall shortest round trip through a proposed set of nodes, we consider
the problem that he also takes the distances to further succeeding nodes in the tour into
account in order to visit nodes lying geographically close to each other contiguously in the
tour. The weights which are put on the distances to the next nearest neighbors in the tour
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Fig. 10 Development of the susceptibility (as defined in the text) for various values of α and for the TSPC
instances based on the BEER127 TSP instance (left) and on the PCB442 TSP instance (right): we can clearly
distinguish two scenarios for small and medium-sized values of α (top) and values close to the limit α → 1
(bottom)

decrease with increasing differences between the tour position numbers of the corresponding
nodes. Depending on these weights, the clustering aspect of contiguously visiting nodes
lying close to each other is more or less emphasized compared to the minimization of the
overall tour length. Due to a simultaneous optimization, clusters of nodes lying close to
each other and being contiguously visited arise naturally while the overall tour length is
minimized. The more the clustering aspect dominates, the larger the optimum overall tour
length becomes. For intermediate values of the clustering constant, the deterioration of the
overall tour length remains small while some small clusters can already develop.

We apply the general purpose optimization algorithm simulated annealing to this prob-
lem, finding that the dynamics of the cooling process is rather similar to the process for
the original traveling salesman problem for small and intermediate values of the cluster-
ing constant. For large values of the clustering constant, the specific heat becomes strongly
asymmetric, the susceptibility exhibits more than one peak, and the difference between the
mean value of random configurations and the optimum value decreases.

Not always is such a clustering extension suitable for a real-world traveling salesman
problem. For example, if a real traveling salesman has to deal with customers having time
windows, the fulfillment of time windows often already contradicts the aim to get a mini-
mum overall tour length. The introduction of an additional clustering term would be highly
disadvantageous. On the other hand, if no such constraints exist, it would sometimes provide
a positive psychologic effect to visit customers close to each other contiguously. But there
are also other variants of the traveling salesman problem, for which an additional clustering
approach would be highly useful: for example, the traveling salesman approach was applied
to determine the temporal sequence between tombs in prehistoric graveyards. Here the dis-
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tances are measured by differences in the properties of grave goods and in the positions of
the skeletons. Often one finds that such a graveyard is strongly used during some prehistoric
time interval, then the usage was interrupted for some time, until it was used again, and so
on. For detecting such time intervals, our clustering approach might be highly useful.

We have already started applying a variant of our Traveling Salesman Problem with Clus-
tering to various problems. Just as in the well-known Traveling Salesman Problem with
Open End Points, for which the Hamiltonian is given as

HTSPOEP(σ ) =
N−1∑

i=1

D(σ(i), σ (i + 1)) (25)

and in which the shortest tour with arbitrary initial and final nodes, touching each node
exactly once has to be found, we have a look at the Traveling Salesman Problem with Clus-
tering and Open End Points, for which the Hamiltonian can be written as

HTSPCOEP(σ ) =
∑

i<j

D(σ(i), σ (j))αj−i−1. (26)

Using this Hamiltonian [25], we first of all intend to visualize the Parisi block structure
found for overlaps qσ,τ between (quasi) optimum configurations σ and τ for Sherrington-
Kirkpatrick spin glasses [31]. The distances between the configurations are given as
D(σ, τ) = 1 − qσ,τ , if the overlaps are normalized. We expect to see a structure like

(qφ(σ),φ(τ)) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 q1

q1 1
q2

q2
1 q1

q1 1

q3

q3

1 q1

q1 1
q2

q2
1 q1

q1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (27)

if the (quasi) optimum solutions are ordered according to an optimum sequence φ. We expect
to see this Parisi block structure not only for the Sherrington-Kirkpatrick model but also
for other optimization problems, for which ultrametric properties were found, such as the
traveling salesman problem [33] and a multi-disperse packing problem [24, 25], which was
recently studied by us.

Secondly, we intend to use the Hamiltonian (26) for generating phylogenetic trees.
Hereby the distances D(i, j) can be defined in various ways for measuring the differences
between species i and j . Again we want to get a picture with block structures denoting
families of species and sub-blocks within these blocks showing genera of species, and so
on.

Of course, the results of these attempts will strongly depend on the size of the clustering
constant α, just as the results for the Traveling Salesman Problem with Clustering studied in
this paper. The results shown here provide an insight in our clustering approach, displaying
both the gains which could be possibly achieved by it as well as the dangers of misinterpret-
ing results by choosing wrong values for the clustering constant.
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